If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t+7.5t^2=180
We move all terms to the left:
15t+7.5t^2-(180)=0
a = 7.5; b = 15; c = -180;
Δ = b2-4ac
Δ = 152-4·7.5·(-180)
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-75}{2*7.5}=\frac{-90}{15} =-6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+75}{2*7.5}=\frac{60}{15} =4 $
| 5(x+3/5)=-22 | | 31.5=5.25(x-8) | | 36/38.7=12/x | | 265=72-y | | -w+184=102 | | 228=-x+62 | | (x-1/3)-(x+1/4)=-1 | | (x-1)/3-(x+1)/4=-1 | | x-1/3-x+1/4=-1 | | |4x-9|=|2x+1| | | .74=1.6/x | | 6-3=0.5x | | .10+8=3p | | (2)(12)=p/8 | | (2)(9)=8+w | | -17+m=0 | | 3=10–n | | 102=c/2 | | (x-2)^2+5=80 | | -8+6x=20+4x | | (x+15)+(2x-25)+2x=180 | | (x+15)+(x-25)+2x=180 | | x/3=x/1.5 | | 4x/3-(x-1)/2=11/4 | | X2+y2-8y+7=0 | | 12b=84; | | 1/4x=3; | | (2x+3)+(x+3)=48 | | 1/4x=3;x=12 | | (2x+3)+(×+2)=48 | | x/9/36=x/24 | | 4^3w=8 |